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Abstract
In scale relativity, quantum mechanics is recovered by transcribing the classical
equations of motion to fractal spaces and demanding, as dictated by the
principle of scale relativity, that the form of these equations be preserved.
In the framework of this theory, however, the form of the classical energy
equations both in the relativistic and nonrelativistic cases are not preserved.
Aiming to get full covariance, i.e., to restore to these equations their classical
forms, we show that the scale-relativistic form of the Schrödinger equation
yields the Pauli equation, whilst the Pissondes’s scale-relativistic form of the
Klein–Gordon equation gives the Dirac equation.

PACS numbers: 03.65.Ca, 03.65.Pm

1. Introduction

Taking as its basic assumption the nondifferentiability of space, Nottale’s scale relativity
permits us to obtain the Schrödinger equation of a microscopic particle from the generalization
to a fractal space of the classical equation of motion of this particle [1–3]. Then, assuming the
nondifferentiability of the whole spacetime, Nottale showed that the Klein–Gordon equation
of a relativistic microscopic particle is also recovered from the generalization to a fractal
spacetime of the relativistic equation of motion of this particle [2, 4, 5]. More recently,
Célérier and Nottale obtained, within the framework of this theory, both the Dirac equation
[6, 7] and the Pauli equation [8].

To derive the Schrödinger equation, Nottale considered a symmetry breaking of the
reflection invariance of the differential-time element (dt −→ −dt), whereas for the derivation
of the Klein–Gordon equation he considered the symmetry breaking of the reflection invariance
of the differential proper-time element (ds −→ −ds). To get the Dirac and Pauli equations,
however, Célérier and Nottale introduced additional symmetry breakings; namely, the breaking
of the symmetries (dxµ −→ −dxµ) and (xµ −→ −xµ). In doing so, they showed that the
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Klein–Gordon equation may be written in a bi-quaternionic form, which in turn leads to the
Dirac equation [6, 7]. In [8], the Pauli equation is recovered as a non-relativistic limit of the
Dirac equation in the quaternionic formalism.

In the present work, we shall see that it is possible to obtain these last two equations
without these additional symmetry breakings, by simply using the scale-relativistic forms of
the Schrödinger and the Klein–Gordon equations. We begin in section 2 by briefly reviewing
Nottale’s derivation of the Schrödinger and Klein–Gordon equations. In section 3, we give
a new derivation of the Pauli equation. In section 4, we give a new derivation of the Dirac
equation. Section 5 contains some concluding remarks on this work.

2. The Schrödinger and Klein–Gordon equations

In scale relativity, space is fractal and nondifferentiable, physical quantities are resolution-
dependent, and the local differential-time reflection invariance (dt −→ −dt) is broken [1, 3].
That is, at each point x(t, dt) of space corresponds two derivatives, i.e., two velocities,

d

dt+
x(t, dt) = x(t + dt, dt) − x(t, dt)

dt
= V+[x(t), t, dt], (1)

d

dt−
x(t, dt) = x(t, dt) − x(t − dt, dt)

dt
= V−[x(t), t, dt]. (2)

(The resolution here is identified with the differential element dt .) By taking what is called
the classical or the ‘large-scale’ parts of these quantities [6, 7, 9], one is left with two scale-
independent velocities, v+ and v−. Also, the existence of two kinds of derivatives yields two
total derivatives with respect to time of any fractal function in the fractal space:

df

dt±
=

(
∂

∂t
+ v± · ∇ ± D�

)
f, (3)

where D is a parameter characterizing the fractal behaviour of trajectories and measuring the
amplitude of the fractal fluctuations [9, 10]. Combining the two velocities in one hand and the
two total derivatives on the other, Nottale defined a complex velocity or a ‘bi-velocity’

V = v+ + v−
2

− i
v+ − v−

2
, (4)

and a complex derivative

D

dt
= 1

2

(
d

dt+
+

d

dt−

)
− i

2

(
d

dt+
− d

dt−

)
= ∂

∂t
+ V · ∇ − iD�. (5)

This derivative operator is called the complex covariant derivative in the sense that it takes
into account the effect of the fractal nature of space [3].

Using the bi-velocity V and the above complex operator, Nottale generalized the classical
momentum p to a complex momentum P = mV , the real Lagrangian L to a complex one
L, with P = ∂L/∂V , and the classical action S to a complex action S so that P = ∇S, or
equivalently, V = ∇S/m.

Finally, writing the complex action differently by introducing a complex-valued
wavefunction ψ = eiS/S0 , where S0 has dimensions of an action and taken to be h̄, the
bi-velocity may be written as [1]

V = P
m

= ∇S
m

= − iS0

m
∇ ln ψ = − ih̄

m
(∇ψ)ψ−1. (6)
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The Schrödinger equation governing the motion of a free particle of mass m is recovered,
according to the principle of scale relativity [1, 2], by writing the classical equation of motion
for the particle: m dv/dt = 0, and making the two substitutions

d

dt
→ D

dt
and v → V, (7)

that yield

m
D

dt
V = 0, (8)

the corresponding ‘equation of motion’ in a nondifferentiable space. Inserting (5) and (6),
one gets a third-order differential equation that, when integrated with 2mD = h̄ [3], gives the
Schrödinger equation

ih̄
∂

∂t
ψ +

h̄2

2m
�ψ = 0. (9)

For a given energy E, this equation writes in terms of the complex velocity V as [5, 10, 11]

V2 − 2iD∇ · V − 2E

m
= 0. (10)

This is the form taken by the stationary Schrödinger equation in scale relativity and the one
that will be used in section 3 to drive the Pauli equation. To obtain the Klein–Gordon equation,
Nottale assumed space and time to be fractal and nondifferentiable. As a consequence, (3)–(6)
generalize as follows [2, 4, 7]:

Vµ = v
µ
+ + v

µ
−

2
− i

v
µ
+ − v

µ
−

2
, (11)

df

ds±
= (

v
µ
±∂µ ∓ K∂µ∂µ

)
f, (12)

D

ds
= 1

2

(
d

ds+
+

d

ds−

)
− i

2

(
d

ds+
− d

ds−

)
= Vµ∂µ + iK∂µ∂µ, (13)

Vµ = Pµ

mc
= ∂µS

mc
= ih̄

mc

∂µψ

ψ
= ih̄

mc
(∂µψ)ψ−1. (14)

Here, µ = 1, . . . , 4.
The Klein–Gordon equation governing the motion of a free relativistic particle of mass m

is recovered, according to the principle of scale relativity, by writing the relativistic equation
of motion for the particle: duα/ds = 0, and making the two substitutions

d

ds
→ D

ds
and uα → Vα, (15)

that yield
D

ds
Vα = 0, (16)

the corresponding ‘equation of motion’ in a nondifferentiable spacetime. Inserting (13)
and (14), one gets a third-order differential equation that, when integrated with 2mcK = h̄,
gives the Klein–Gordon equation:

∂µ∂µψ +
m2c2

h̄2 ψ = 0. (17)

In [5], Pissondes showed that this equation may be written in terms of Vµ in the form

VµVµ + 2iK∂µVµ − 1 = 0. (18)

This form of the Klein–Gordon equation will be our starting point to get the Dirac equation in
section 4.
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3. The Pauli equation

Inspired by the work of Dirac in [12], Lévy-Leblond derived in [13] the Pauli equation by
constructing a linear and first-order differential equation, which, when acted upon from the left
by a linear operator gives back the Schrödinger second-order differential equation. Following
a method similar to that of Lévy-Leblond but for different motivations, we shall arrive at
the Pauli equation in the framework of scale relativity. Indeed, looking at the Schrödinger
equation in its scale-relativistic form (10), we see that it has the form of the classical energy
equation v2 − 2E

m
= 0 but with an additional derivative term. In order to recover the classical

form, we must first isolate the derivative operator by factorizing (10) to cast it into a product
of a linear form in V and a linear operator acting from the left. We then take the linear form to
vanish as a sufficient condition for the equation to hold. Let αi (i = 1, 2, 3), β and λ be five
parameters to be determined, such that the following product gives back (10)(

αiV i − 2iDαi∇ i + β
E

m
+ λ

)(
αjVj − β

E

m
− λ

)
= 0. (19)

Working out the different factors, we see that we must have

αiαj∇ iVj = ∇ · V, (20)

β2 = 0, λ2 = 0, β
λ

2
+

λ

2
β = 1, (21)

αiV iαjVj = V2, (22)(
β

E

m
+ λ

)
αiV i − αiV i

(
β

E

m
+ λ

)
= 0. (23)

Using the fact that rotV = 0 [14], or equivalently, ∇ iVj −∇jV i = 0, (20) may be rewritten as
1
2 {αi, αj }∇ iVj = ∇ · V, (24)

where {αi, αj } is the anticommutator of αi and αj . Hence, {αi, αj } = 2δij . We conclude
that the three parameters αi must be matrices rather than scalars and, more precisely, traceless
matrices of even order. To satisfy the above anticommutation relation, the simplest choice is
to use either the three Pauli σ i matrices

α1 =
(

0 1
1 0

)
, α2 =

(
0 −i
i 0

)
, α3 =

(
1 0
0 −1

)
, (25)

or one of the two following groups of three 4×4 matrices constructed using the Pauli matrices:

αi =
(

0 σ i

σ i 0

)
or αi =

(
σ i 0
0 σ i

)
. (26)

From (21) we also conclude that β and λ cannot be scalars but matrices that might be chosen
to be

β = i

(
0 0
1 0

)
, λ = −2i

(
0 1
0 0

)
, (27)

where 1 is either the unit number or the unit 2 × 2 matrix.
Now a sufficient condition for (19) to hold is

αiV i − β
E

m
− λ = 0. (28)

However, this condition will be inconsistent with (22) if one uses (27) for β and λ and chooses
for αi either the Pauli matrices (25) or the first group of matrices in (26). This can easily be
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checked for the special case V1 �= 0, and V2 = V3 = 0. So we take the second group of
matrices in (26) to represent the αi’s and, as a consequence, V i , β and λ must also be 4 × 4
matrices. With these choices and (28), (23) becomes trivial whilst (22) yields

V2 =
(

β
E

m
+ λ

)2

= 2E

m
1 or

1

2
mV2 = E, (29)

where E is a diagonal 4 × 4 matrix with all entries equal to E. The above identity is nothing
but the generalization in scale relativity of the classical energy equation 1

2mv2 = E. Thus,
we see that, even though it is not possible using complex numbers to generalize 1

2mv2 = E to
1
2mV2 = E [10], as it should according to the principle of scale relativity, which states that the
form of the classical equations written in the ordinary space are preserved when transcribed
into a fractal space via the substitutions (7), it is possible to satisfy this principle provided we
substitute the matrices to complex numbers in the expression of V .

Now using (6), (28) reads

αi∂iψ − i

h̄
(βE + λm)ψ = 0, (30)

implying that ψ must be a four-component spinor, which we write in the form ψ = (
ϕ

η

)
,

where ϕ and η are both two-spinors. Then, (26) and (27) give us(
σ i 0
0 σ i

) (
∂iϕ

∂iη

)
+

(
0 − 2m

h̄
E
h̄

0

) (
ϕ

η

)
= 0. (31)

Finally, since the energy E and the classical velocity vi = pi/m generalize for a charge e
in the presence of an electromagnetic field into E − eU and pi/m− eAi/mc, respectively, the
scale-relativistic energy E and velocity V i of a charge e inside an electromagnetic field must
also generalize, according to the principle of scale relativity, as

E → E − eU and V i → P i

m
− e

mc
Ai, (32)

where U and Ai are, respectively, the scalar and the vector potentials. Thus, from (6),
(26)–(28), (31) becomes(

σ i 0
0 σ i

) (
∂iϕ

∂iη

)
+

(− ie
h̄c

σ iAi − 2m
h̄

E−eU
h̄

− ie
h̄c

σ iAi

)(
ϕ

η

)
= 0. (33)

This is a system of two coupled equations in ϕ and η from which we can get a single equation
in either ϕ or η alone in the form{

E − eU − 1

2m

[
σ ·

(
P − e

c
A

)] [
σ ·

(
P − e

c
A

)]}
ϕ = 0, (34)

where we have introduced the quantum mechanical notation P = −ih̄∇, and σ and A are
vectors whose components are σ i and Ai , respectively.

Using the vector identity

(σ · b)(σ · c) = b · c + iσ · (b × c) (35)

and

P × A = −ih̄∇ × A = −ih̄B, (36)

where B is the magnetic vector field, (34) becomes{
E − eU − 1

2m

(
P − e

c
A

)2
+

eh̄

2mc
σ · B

}
ϕ = 0, (37)

which is the stationary Pauli equation containing the magnetic moment of the electron eh̄/2mc.
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4. The Dirac equation

Looking at the Klein–Gordon equation in its scale-relativistic form (18), we see that it has the
form of the motion-relativistic invariant form vµvµ = 1 but with an additional derivative term.
Seeking to restore the classical form, in accordance with the principle of scale relativity that
demands full covariance, we will isolate the derivative operator by a method similar to that
used by Dirac to derive his equation. That is, we factorize the Klein–Gordon equation written
in its scale-relativistic form (18) to cast it into a product of a linear form in V and a linear
operator acting from the left. Then we take the linear form to vanish as a sufficient condition
for the equation to hold. This, in turn, will lead us (as we shall see) to the Dirac equation. Let
αµ(µ = 1, . . . , 4) and β be five parameters to be determined, such that the following product
gives back (18)

(αµVµ + 2iKαµ∂µ + β)(ανVν − β) = 0. (38)

Working out the different factors, we see that we must have

αµαν∂µVν = ∂µVµ, (39)

β2 = 1, (40)

αµVµανVν = VµVµ, (41)

βαµVµ − αµVµβ = 0. (42)

Using the fact that ∂µVν − ∂νVµ = 0 [5], we rewrite (39) as
1
2 {αµ, αν}∂µVν = ∂µVµ. (43)

Hence, {αµ, αν} = 2ηµν . That is, the parameters αµ cannot be pure numbers but matrices
that satisfy the Dirac algebra, i.e., αµ ≡ γ µ, where γ µ are the familiar Dirac matrices. To
satisfy (40) we may choose β = 1, where 1 is the unit 4 × 4 matrix. Then, the Vµ’s must also
be 4 × 4 matrices.

Now a sufficient condition for (38) to hold is

αµVµ − β = 0 or γ µVµ − 1 = 0, (44)

thanks to which (42) becomes trivial whilst (41) gives

VµVµ = 1. (45)

So again we see that, provided we substitute matrices to complex numbers in the expression
of Vµ, the principle of scale relativity is realized since the quadratic invariant form vµvµ = 1
is generalized to VµVµ = 1 as it should and as it would if one uses the substitutions (15) to
transcribe the classical invariant vµvµ to a fractal spacetime [4, 5].

Using (14) and (44) leads to
ih̄

mc
γ µ(∂µψ)ψ−1 − 1 = 0 or

(
ih̄

mc
γ µ∂µ − 1

)
ψ = 0. (46)

Since the γ µ’s are 4 × 4 matrices, ψ must be a four-component column vector, i.e., a Dirac
spinor and the above equation is the free Dirac equation.

Finally, in scale relativity, the Vµ of a charge e in the presence of an electromagnetic field
is generalized into [15, 16]

Vµ = Pµ

mc
− e

mc2
Aµ, (47)

where Aµ is the four-vector potential. Then, from (14) and (44), we get[
γ µ

(
ih̄

mc
∂µ − e

mc2
Aµ

)
− 1

]
ψ = 0, (48)

which is the Dirac equation in the presence of an electromagnetic field.
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5. Concluding remarks

Our aim in the present paper was to derive both the Pauli and Dirac equations using the tools
of scale relativity. The starting point of our derivations was the energy equations in scale
relativity. Being of a different form from their classical counterparts by additional derivative
terms, we have isolated the derivative operators to restore the classical forms and recovered
in the process the familiar Pauli and Dirac equations. In [17], the classical form of the
Hamiltonian H = vp − L, and therefore of all the energy equations, is recovered instead
using a new velocity operator V̂ = V − iD∇ [18] so that H = V̂P − L; the additional terms
in the energy equations being maintained. In [5, 10, 11] these terms are interpreted as the
quantum potentials of quantum mechanics and, as such, considered as manifestations of the
nondifferentiability and fractality of spacetime. For that we should note here that our approach
does not, as it may seem, contradict those results. Indeed, energy equations without derivative
terms, and with them the Pauli and Dirac equations, steam from (28) and (44), respectively.
These, as we saw, are only sufficient and not necessary conditions for our factorizations (19)
and (38) to hold. This means that the suppressions of the additional terms occur only when (28)
or (44) are satisfied in which case we get spinors or equivalently fermions.

Although new concepts were needed for the derivations of the Pauli and Dirac equations
in [6–8], these had the advantage of proposing a geometric origin for the spin in quantum
mechanics. In this respect, our approach is complementary to those. Our method, however,
permits not only to derive both equations without additional concepts other than those used to
get the Schrödinger and Klein–Gordon equations in scale relativity but also to give a physical
meaning to their standard derivations in quantum mechanics. Indeed, before the work of
Lévy-Leblonc, it was believed that the emergence of the spin from the Dirac equation was
purely relativistic. The derivation by Lévy-Leblonc of the Pauli equation with the correct
gyromagnetic moment of the electron from the nonrelativistic Schrödinger equation without
passing through the Dirac equation showed that the electron spin was rather a consequence
of the ‘postulate’ of the linearization of the wave equations [19]. Here, we have seen that
the physical motivation behind the factorization that actually leads to this linearization is the
principle of scale relativity that imposes on physical equations to keep their classical forms in
scale relativity.
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